Intro ERC-721 Tokens
Non-Fungible Token Standard
Previously, we explored the ERC-20 interface, a contract standard which allowed for the implementation of a token contract which the majority of smart contract users are able to easily call. As a result of the ERC-20 standard, many protocols were able flourish without having to worry about incompatible token interfaces. However, there is one thing that the ERC-20 standard did not fix... To understand the biggest shortcoming of the ERC-20 standard, we have discussed the concept of fungibility. Its design enables crucial fucntionality. However, this also implies that for a use case that requires for 1 unit of some ERC-20 A to be different in value than 1 unit of the same ERC-20 token A, the ERC-20 token standard is not sufficient for such a use case.
ERC-721
To make clear a particular that ERC-20 cannot support, imagine we wanted to represent an art collection within a smart contract. The smart contract would contain the following functionality in a similar fashion to an ERC-20 token:
- The ability to query the "balance" (i.e. the art holdings) of a particular user
- The ability to transfer art pieces from one account to another
- The ability to get information about the art collection
- The biggest different between an arbitrary ERC-20 token contract and an art collection is the fungibility of individual items - ERC-20 tokens are inherently fungible with items in the art collections are not (since the items each vary in value).
To account for uses cases like an art collection, the ERC-721 standard was introduced. Formally, ERC-721 is a standard for non-fungible tokens. Below is the interface of the ERC-721 token from its original proposal :
interface ERC721 {
/// @dev This emits when ownership of any NFT changes by any mechanism.
/// This event emits when NFTs are created (`from` == 0) and destroyed
/// (`to` == 0). Exception: during contract creation, any number of NFTs
/// may be created and assigned without emitting Transfer. At the time of
/// any transfer, the approved address for that NFT (if any) is reset to none.
event Transfer(address indexed _from, address indexed _to, uint256 indexed _tokenId);
/// @dev This emits when the approved address for an NFT is changed or
/// reaffirmed. The zero address indicates there is no approved address.
/// When a Transfer event emits, this also indicates that the approved
/// address for that NFT (if any) is reset to none.
event Approval(address indexed _owner, address indexed _approved, uint256 indexed _tokenId);
/// @dev This emits when an operator is enabled or disabled for an owner.
/// The operator can manage all NFTs of the owner.
event ApprovalForAll(address indexed _owner, address indexed _operator, bool _approved);
/// @notice Count all NFTs assigned to an owner
/// @dev NFTs assigned to the zero address are considered invalid, and this
/// function throws for queries about the zero address.
/// @param _owner An address for whom to query the balance
/// @return The number of NFTs owned by `_owner`, possibly zero
function balanceOf(address _owner) external view returns (uint256);
/// @notice Find the owner of an NFT
/// @dev NFTs assigned to zero address are considered invalid, and queries
/// about them do throw.
/// @param _tokenId The identifier for an NFT
/// @return The address of the owner of the NFT
function ownerOf(uint256 _tokenId) external view returns (address);
/// @notice Transfers the ownership of an NFT from one address to another address
/// @dev Throws unless `msg.sender` is the current owner, an authorized
/// operator, or the approved address for this NFT. Throws if `_from` is
/// not the current owner. Throws if `_to` is the zero address. Throws if
/// `_tokenId` is not a valid NFT. When transfer is complete, this function
/// checks if `_to` is a smart contract (code size > 0). If so, it calls
/// `onERC721Received` on `_to` and throws if the return value is not
/// `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`.
/// @param _from The current owner of the NFT
/// @param _to The new owner
/// @param _tokenId The NFT to transfer
/// @param data Additional data with no specified format, sent in call to `_to`
function safeTransferFrom(address _from, address _to, uint256 _tokenId, bytes data) external payable;
/// @notice Transfers the ownership of an NFT from one address to another address
/// @dev This works identically to the other function with an extra data parameter,
/// except this function just sets data to "".
/// @param _from The current owner of the NFT
/// @param _to The new owner
/// @param _tokenId The NFT to transfer
function safeTransferFrom(address _from, address _to, uint256 _tokenId) external payable;
/// @notice Transfer ownership of an NFT -- THE CALLER IS RESPONSIBLE
/// TO CONFIRM THAT `_to` IS CAPABLE OF RECEIVING NFTS OR ELSE
/// THEY MAY BE PERMANENTLY LOST
/// @dev Throws unless `msg.sender` is the current owner, an authorized
/// operator, or the approved address for this NFT. Throws if `_from` is
/// not the current owner. Throws if `_to` is the zero address. Throws if
/// `_tokenId` is not a valid NFT.
/// @param _from The current owner of the NFT
/// @param _to The new owner
/// @param _tokenId The NFT to transfer
function transferFrom(address _from, address _to, uint256 _tokenId) external payable;
/// @notice Change or reaffirm the approved address for an NFT
/// @dev The zero address indicates there is no approved address.
/// Throws unless `msg.sender` is the current NFT owner, or an authorized
/// operator of the current owner.
/// @param _approved The new approved NFT controller
/// @param _tokenId The NFT to approve
function approve(address _approved, uint256 _tokenId) external payable;
/// @notice Enable or disable approval for a third party ("operator") to manage
/// all of `msg.sender`'s assets
/// @dev Emits the ApprovalForAll event. The contract MUST allow
/// multiple operators per owner.
/// @param _operator Address to add to the set of authorized operators
/// @param _approved True if the operator is approved, false to revoke approval
function setApprovalForAll(address _operator, bool _approved) external;
/// @notice Get the approved address for a single NFT
/// @dev Throws if `_tokenId` is not a valid NFT.
/// @param _tokenId The NFT to find the approved address for
/// @return The approved address for this NFT, or the zero address if there is none
function getApproved(uint256 _tokenId) external view returns (address);
/// @notice Query if an address is an authorized operator for another address
/// @param _owner The address that owns the NFTs
/// @param _operator The address that acts on behalf of the owner
/// @return True if `_operator` is an approved operator for `_owner`, false otherwise
function isApprovedForAll(address _owner, address _operator) external view returns (bool);
}
Implementation Design
Notice that for an ERC-20 token, we can store the balance of all token holders with the following data structure:
mapping(address => uint) balances;
In the case of the ERC-721 token standard, this is not enough, since using just this data structure would imply that all tokens of an ERC-721 contract are fungible. Therefore, we want to use the following data structures:
mapping(address => uint) balances;
mapping(uint => address) holders;
The balances data structure will map accounts to the number of non-fungible tokens they hold. The data structure holders, meanwhile, will map the ID of each non-fungible token to the address which holds the token. Therefore, by adding just another mapping, we've just allowed our token contract to incorporate non-fungible tokens!
Last updated on 2/6/2025